Brydż sportowy, inaczej brydż porównawczy ( ang. duplicate bridge) – odmiana brydża, w której dzięki specjalnej organizacji rozgrywek poszczególne rozdania rozgrywane są na wielu stołach przez różnych graczy. Wynik osiągnięty przez jedną parę graczy porównywany jest z wynikami innych par rozgrywających to samo rozdanie z tym Wyznacz równanie okręgu przechodzącego przez punkt \(A = (2, 1)\) i stycznego do obu osi układu współrzędnych. Rozważ wszystkie przypadki. \((x-1)^2+(y-1)^2=1\) lub \((x-5)^2+(y-5)^2=25\) Okrąg o środku w punkcie \(S=(3,7)\) jest styczny do prostej o równaniu \(y=2x-3\). Oblicz współrzędne punktu styczności. Dane są trzy liczby: a=2 pierwiastek z 3, b= pierwiastek z 48 i c= pierwiastek 3 stopnia z 24. W którym podpunkcie poprawnie uporządkowano je od największej do najmniejszej? Wybierz wlaściwą odpowiedź spośród podanych. A. a >b>c B. a >c>b C.b>c>a D. b>a>c E. c>b>a Daje NAJJ! Dane są cztery liczby. Trzy pierwsze z nich tworzą ciąg geometryczny, zaś trzy ostatnie ciąg arytmetyczny. Suma liczb skrajnych jest równa 14, suma liczb środkowych 12. Znajdz te liczby. Zadanie jest zamknięte. Autor zadania wybrał już najlepsze rozwiązanie lub straciło ono ważność. Punkty 2. i 3. oznaczają to samo, co: funkcję należy przesunąć o wektor [4, 2]. Biorąc pod uwagę trzy powyższe warunki, konstruujemy wykres funkcji, który wygląda następująco: Przykład 2. Dane są punkty: \(A=(1,2), B=(-1,4)\). Obliczyć długość odcinka \(\overline{AB}\). Korzystamy z powyższego wzoru: \(|AB|=\sqrt{(-1-1)^2+(4-2)^2}=\sqrt{4+4 Oblicz współrzędne czwartego wierzchołka, oraz współrzędne punktu P przecięcia przekątnych, jeśli: a) A(4,1), B(2,6), C(-8,3) 3. Oblicz współrzędne punktu S przecięcia środkowych w trójkącie ABC, jeśli: Materiał zawiera 5 ilustracji (fotografii, obrazów, rysunków), 25 ćwiczeń, w tym 10 interaktywnych. Zawartość tekstowa - ciekawostka (układ współrzędnych w przestrzeni), przykłady (zbiory punktów w układzie współrzędnych). Ćwiczenia - zaznaczanie w układzie współrzędnych punktów o danych własnościach. Dane są trzy równania: I. 2x+3=11 II. x+4=4 III. 3x-1=11 Które z tych równań mają to samo rozwiązanie? wybierz właściwą odpowiedź spośród podanych. A. I i II B. I i III C. II i III D. I, II i III Dane są punkty A(-3,2), B(1,4), C(3,-5), D(-1,-7). Oblicz współrzędne wektorów: a) AB + 2 CD b) 3 BC - 1/2 AD c) AC + DB + CD + BA S) 4 AD - 6 BC + 5 BD Nie Tht7J. Dane są punkty A=(-3,-2), B=(2, -2). Obliczyć długość odcinka Rozwiązanie zadania uproszczone Rozwiązanie zadania ze szczegółowymi wyjaśnieniami Skorzystamy ze wzoru na długość odcinka wyznaczonego przez dwa punkty w układzie współrzędnych: Obliczamy odległość między punktami o współrzędnych: . Korzystamy z powyższego wzoru: Odpowiedź © 2011-01-02, ZAD-1067 Zadania podobne Zadanie - Długość odcinkaDany jest punkt A=(1,4). Znaleźć taki punkt B, że i który leży na prostej Pokaż rozwiązanie zadaniaZadanie - długość odcinka i pole trójkątaObliczyć pole i obwód trójkąta prostokątnego, wyznaczonego przez punkty A=(1,2), B=(1,3), C=(4,1)Pokaż rozwiązanie zadaniaZadanie - środek odcinkaDany jest odcinek o końcach . Znaleźć współrzędne środka odcinka Pokaż rozwiązanie zadaniaZadanie - środek odcinkaZnaleźć środek kwadratu wyznaczonego przez punkty Pokaż rozwiązanie zadaniaZadanie - symetralna odcinkaZnaleźć równanie symetralnej odcinka , gdzie Pokaż rozwiązanie zadaniaZadanie maturalne nr 21, matura 2016 (poziom podstawowy)W układzie współrzędnych dane są punkty A = (a,6) oraz B = (7,b) . Środkiem odcinka AB jest punkt M = (3,4). Wynika stąd, że: A. a=5 i b=5 B. a=-1 i b=2 C. a=4 i b=10 D. a=-4 i b=-2Pokaż rozwiązanie zadaniaZadanie maturalne nr 13, matura 2016 (poziom rozszerzony)Punkty A=(30,32) i B =(0,8) są sąsiednimi wierzchołkami czworokąta ABCD wpisanego w okrąg. Prosta o równaniu x-y+2=0 jest jedyną osią symetrii tego czworokąta i zawiera przekątną AC. Oblicz współrzędne wierzchołków C i D tego rozwiązanie zadaniaZadanie maturalne nr 16, matura 2016 (poziom rozszerzony)Parabola o równaniu przecina oś Ox układu współrzędnych w punktach A = (- 2,0) i B = (2,0). Rozpatrujemy wszystkie trapezy równoramienne ABCD, których dłuższą podstawą jest odcinek AB, a końce C i D krótszej podstawy leżą na paraboli (zobacz rysunek).Wyznacz pole trapezu ABCD w zależności od pierwszej współrzędnej wierzchołka C. Oblicz współrzędne wierzchołka C tego z rozpatrywanych trapezów, którego pole jest rozwiązanie zadaniaZadanie maturalne nr 5, matura 2015 (poziom rozszerzony)Odległość początku układu współrzędnych od prostej o równaniu y = 2x + 4 jest równa A. B. C. D. 4Pokaż rozwiązanie zadania Niektóre treści nie są dostosowane do Twojego profilu. Jeżeli jesteś pełnoletni możesz wyrazić zgodę na przetwarzanie swoich danych osobowych. W ten sposób będziesz miał także wpływ na rozwój naszego serwisu. © ® Media Nauka 2008-2022 r. Drogi Internauto! Aby móc dostarczać coraz lepsze materiały i usługi potrzebujemy Twojej zgody na zapisywanie w pamięci Twojego urządzenia plików cookies oraz na dopasowanie treści marketingowych do Twojego zachowania. Dzięki temu możemy utrzymywać nasze cookies w celach funkcjonalnych oraz w celu tworzenia anonimowych statystyk. Ddbamy o Twoją udzielić nam zgody na profilowanie i remarketing musisz mieć ukończone 16 lat. Brak zgody nie ograniczy w żaden sposób treści naszego serwisu. Udzieloną nam zgodę w każdej chwili możesz wycofać w Polityce prywatności lub przez wyczyszczenie historii zgody oznacza wyłączenie profilowania, remarketingu i dostosowywania treści. Reklamy nadal będą się wyświetlać ale w sposób przypadkowy. Nadal będziemy używać zanonimizowanych danych do tworzenia statystyk serwisu. Dalsze korzystanie ze strony oznacza, że zgadzasz się na takie użycie się z naszą Polityką ZGODY ZGODA Środkiem odcinka \(AB\), gdzie \(A = (x_1, y_1)\) oraz \(B = (x_2, y_2)\) jest punkt: \[S=\left(\frac{x_1+x_2}{2}; \frac{y_1+y_2}{2}\right)\] Punkt \(S=(-4, 7)\) jest środkiem odcinka \(PQ\), gdzie \(Q=(17, 12)\). Zatem punkt \(P\) ma współrzędne A.\( P=(2, -25) \) B.\( P=(38, 17) \) C.\( P=(-25, 2) \) D.\( P=(-12, 4) \) CPunkt \(S=(3,-1)\) jest środkiem odcinka \(AB\) i \(A=(-3,-5)\). Punkt \(B\) ma współrzędne: A.\( (9,3) \) B.\( (9,-3) \) C.\( (-9,-3) \) D.\( (-9,3) \) APunkt \(S = (2, 7)\) jest środkiem odcinka \(AB\), w którym \(A = (-1, 3)\). Punkt \(B\) ma współrzędne: A.\( B=(5,11) \) B.\( B=\left (\frac{1}{2},2 \right) \) C.\( B=\left (-\frac{3}{2},-5 \right) \) D.\( B=(3,11) \) APunkt \(S=(4,1)\) jest środkiem odcinka \(AB\), gdzie \(A=(a,0)\) i \(B=(a+3,\ 2)\). Zatem A.\( a=0 \) B.\( a=\frac{1}{2} \) C.\( a=2 \) D.\( a=\frac{5}{2} \) DPunkty \( A=(13,-12) \) i \( C=(15,8) \) są przeciwległymi wierzchołkami kwadratu \( ABCD \). Przekątne tego kwadratu przecinają się w punkcie A.\(S=(2,-20) \) B.\(S=(14,10) \) C.\(S=(14,-2) \) D.\(S=(28,-4) \) CDane są punkty \(M=(-2,1)\) i \(N=(-1,3)\). Punkt \(K\) jest środkiem odcinka \(MN\). Obrazem punktu \(K\) w symetrii względem początku układu współrzędnych jest punkt A.\( K'=\left ( 2,-\frac{3}{2} \right ) \) B.\( K'=\left ( 2,\frac{3}{2} \right ) \) C.\( K'=\left ( \frac{3}{2},2 \right ) \) D.\( K'=\left ( \frac{3}{2},-2 \right ) \) DPunkt \(K=(-4,4)\) jest końcem odcinka \(KL\), punkt \(L\) leży na osi \(Ox\), a środek \(S\) tego odcinka leży na osi \(Oy\). Wynika stąd, że A.\( S=(0,2) \) B.\( S=(-2,0) \) C.\( S=(4,0) \) D.\( S=(0,4) \) APunkt \(S = (2,−5)\) jest środkiem odcinka \(AB\), gdzie \(A = (−4,3)\) i \(B = (8,b)\). Wtedy A.\( b=-13 \) B.\( b=-2 \) C.\( b=-1 \) D.\( b=6 \) AW układzie współrzędnych na płaszczyźnie dany jest odcinek \(AB\) o końcach w punktach \(A=(7,4)\), \(B=(11,12)\). Punkt \(S\) leży wewnątrz odcinka \(AB\) oraz \(|AS|=3\cdot |BS|\). Wówczas A.\( S=(8,6) \) B.\( S=(9,8) \) C.\( S=(10,10) \) D.\( S=(13,16) \) Dane są punkty \(M=(3,-5)\) oraz \(N=(-1,7)\). Prosta przechodząca przez te punkty ma równanie A.\( y=-3x+4 \) B.\( y=3x-4 \) C.\( y=-\frac{1}{3}x+4 \) D.\( y=3x+4 \) Malutka667 @Malutka667 January 2019 1 152 Report Dane są punkty M = (3, -5) oraz N = (-1, 7) . Prosta przechodząca przez te punkty ma równanie; a) y=-3x+4 b) y=3x-4 c) y=-1/3x+4 d) y=3x+4 chica199 -5=3a+b/-17= -a+b5=-3a-b7= -a+b12=-4aa=-37= -a+b7=3+b-3+7=bb=4y=-3x+4 odp. aJak maturka ogółem poszła, widzę że też stara, 0 votes Thanks 2 More Questions From This User See All Malutka667 January 2019 | 0 Replies 1. Wyznacz równanie funkcji liniowej, której wykres przechodzi przez punkty A = (-1; 2) i B = (2; -7) 2. Napisz wzór funkcji liniowej, której wykres przechodzi przez punkt A(-5,0) i jest równoległy do wykresu funkcji y = 0,2 x. 3. Prosta l ma równanie y = − 7x + 2. Podaj równanie prostej prostopadłej do l i przechodzącej przez punkt P=(0,1). Answer Malutka667 January 2019 | 0 Replies W pewnej klasie stosunek liczby dziewcząt do liczby chłopców jest równy 4:5 Losujemy jedną osobę z tej klasy. Prawdopodobieństwo tego, że będzie to dziewczyna, jest równe ; a)4/5 b)4/9 c)1/4 d)1/9 Answer Malutka667 January 2019 | 0 Replies Kula o promieniu 5 cm i stożek o promieniu podstawy 10 cm mają równe objętości. Wysokość stożka jest równa : a)25/π cm b)10 cm c)10/π cm d)5 cm Answer Malutka667 January 2019 | 0 Replies Przekątna ściany sześcianu ma długość 2. Pole powierzchni całkowitej tego sześcianu jest równe : a)24 b)12 c)16 i pierwiastek z 2 d) 12 i pierwiastek z 2 Answer Malutka667 January 2019 | 0 Replies Proste o równaniach: y=2mx-m^2-1 oraz y=4m^2x+m^2+1 są prostopadłe dla m równego : a)-1/2 b)1/2 c)1 d)2 Answer Malutka667 January 2019 | 0 Replies Trzy liczby, których suma jest równa 105, tworzą ciąg geometryczny, Jeśli pierwszą liczbę zmniejszymy o 45, to otrzymamy ciąg arytmetyczny, Wyznacz te liczby. Answer malutka667 November 2018 | 0 Replies proszejaką zdolnośc skupiajacą mają soczewki o ogniskowych 50 cm , -25 cm i 12,5 cm. jaka jest lączna zdolność skupiająca ukladu tych soczewek? Answer malutka667 November 2018 | 0 Replies Jaką zdolność skupiającą maja soczewki o ogniskowych 50 cm , -25 cm i 12,5cm. Jaka jest łączna zdolność skupiająca uklad tych soczewek? Answer